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Abstract

The tandem 1,3 cycloaddition–rearrangement and open chain reactions of 2-aryl-N-aroyl-4,5-dimethyl-
1,2,3-triazol-1-imines with DMAD at room temperature and in refluxing toluene are described. © 2000
Elsevier Science Ltd. All rights reserved.
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Heteroaromatic N-imines constitute a highly useful class of compounds, especially as syn-
thetic intermediates in preparative heterocyclic chemistry.1 Their synthetic utility and reactivity
has been thoroughly investigated over the last decades. Of particular interest is their ability to
function as 1,3-dipoles in cycloaddition reactions, which was first demonstrated by Huisgen2 and
co-workers some time ago, giving rise to many interesting heterocyclic systems.3 The reactivity
stems from the azomethine imine structure of the N-imines. The azomethine imine moiety is
incorporated into a heteroaromatic ring system. At present, several research groups still
continue to contribute in the field.4

Recently, we have developed an efficient way of synthesizing the title compounds by oxidation
of biacetyl aroyl-arylhydrazones5 and measured their electric dipole moments.6 In continuation
of our work in the field, herein we wish to report the 1,3-dipolar cycloaddition and open chain
reactions of 1,2,3-triazol-1-imines 1 with dimethyl acetylenedicarboxylate (DMAD).

When the title 1,2,3-triazol-1-imines 1 were heated at reflux in toluene with DMAD as
dipolarophile,7 good yields of the substituted dihydro-1,2,3-triazines 3 were obtained (Scheme 1
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Scheme 1. Cycloaddition and open chain reaction sequence

and Table 1). In two cases (entries 2 and 5, Table 1) the substituted pyrrolo[2,3-d ]-1,2,3-triazoles
2b and 2e were also isolated from the reaction mixture in low yields. Compounds 2 are
considered to be formed by the same reaction route leading to compounds 3. In addition, almost
in all cases, compounds 6, which result from the open chain reaction sequence depicted in
Scheme 1 (vide infra), were also obtained.

In order to define the scope and the limitations of the title reaction, we also performed the
cycloaddition experiments at room temperature and discovered that temperature exerts an
interesting influence on product formation. In particular, on going from refluxing toluene to
room temperature,7 the yield of dihydro-triazine 3 was minimized or nullified while the yield of
pyrrolo-triazole 2 was increased (Table 1). At the same time, the yield of product 6 was also
increased and a new product appeared, to which structure 7 was ascribed (Scheme 1).

The above results can be explained in terms of two concurrent reaction pathways. The first
involves a cycloaddition reaction in which the initially formed unstable cycloadduct leads, via a
stepwise rearrangement, to the pyrrolo-1,2,3-triazole 2 (Scheme 1). Further rearrangement leads
finally to the dihydro-1,2,3-triazine 3. This multistep mechanism was first proposed by Butler
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Table 1
Isolated yields of products derived from 1,2,3-triazol-1-imines 1 and DMAD at room temperature and in

refluxing toluene

Entry Starting imine 1 Isolated Yields (%)

3 6 7 Total2

Rt Da Rt Da Rt DaDa Rt Da Rt

1 – 33 68 5 7 20 – 12 75 701a
36 74 5 6 16 – 9 88 662 1b 8
5 80 12 5 58– –3 6 85 811c

–1d 14 23 – 18 21 – 6 41 414
6 45 12 – 5 – 5 505 281e 5

a Refluxing toluene.

and co-workers in order to explain the products of the reaction of 1,2,3-triazole-N-oxides with
dialkyl acetylenedicarboxylates.8 Similar mechanisms were also found to operate in a series of
cycloaddition reactions of 1,2,3-triazol-imines with various dipolarophiles.9

On the other hand, formation of products 6 and 7 can be rationalized by an open chain
reaction sequence, operating concurrently to the cycloaddition pathway and which probably
involves the tautomeric form 5 of the intermediate 4 (Scheme 1). Finally, products 6 and 7 result
from an intramolecular attack on the exocyclic methylene group in 5 by carbon or oxygen,
respectively, which is followed by N�N bond cleavage. It should be noticed that the total yields
of the open chain products 6 and 7 are comparable to those of the cycloaddition products 2 and
3 when the reaction is carried out at room temperature, while at higher temperature the total
yields of the cycloaddition products are overwhelming (Table 1).

The product dichotomy due to temperature variation is unprecedented to our knowledge in
the cycloaddition chemistry of the heterocyclic N-imines and apparently originates from the
relatively higher energy demands of the cycloaddition reaction, compared to the open chain
reaction. However, the latter is only sluggish at room temperature and also inefficient at higher
temperature apparently because the generation of the assumed intermediate 5 cannot favorably
compete with the cycloaddition.
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